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Limit Design of a Full Reinforcement for a

Symmetric Convex Cutout in a Uniform Slab1

By P. G. Hodge, Jr.
2

Abstact A recent paper by 'leiss, Prager, and
IIod e 1)3 established a design basis for an
annular reinforcement of a circular cutout in
a uniform slab, In the present paper, the
method is extended to deal with a cutout of
more arbitrary shape. In addition, the rein-
forcement is designed so that under a given
loading all cross-sections will become fully
plastic simultaneously.

1., Introduction. Consider a plane square slab of uniform

thickness h, subject to uniform tensions Txh9 Tyh on its edges.

The slab contains a cutout, the shape of which is subjected only

to the following limitations: (1) there are at least two per-

pendicular a.-es of symmetry; (2) the cutout is convex; (3) the

maximum width occurs at an axis of symmetry. The problem is to

deisgn the reinforcement of total thickness H so that the cutout

slab will be "safe" under the given loads. Further, the shape

of the reinforcement is to be chosen in a particular manner to

be defined presently,

This problem is a generalization of the circular cutout

considered by 'leiss, Prager and Hodge (l). As such, it is subject

1. The results presented in this paper were obtained in the
course of research conducted under Contract N7onr-35810
between the Office of Naval Research and Brown University.

2. Assistant Professor of 17athematics, University of California,
Los Angeles, California.

3. lumbers in brackets refer to the references at the end of
the paper.
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to the sam~e limitations of anplication. In particular, the di-

mensions of the reinforced part of the slab must be such that

it may be reasonably approximated by a curved beam in which

shear forces may be neglected.

In a discussion of the paner by Weiss, Prager, and Iodge,

English [2) pointed out that if uniaxial loading alone is con-

sidered, a non-circular reinforcement could be desi[-ned such

that two sections become fully plastic simultaneously. In the

present *aper, this idea will also be extended and a reinforce:aent

designed which becomes fully plastic simultaneously at each sec-

tion. As will be seen in the later development, this recquirement

of simultaneous full plasticity does not lead to a unique design,

even for a given height so that certain additional conditions

may be imposed. Since these conditions are most easily stated in

terminology which is yet to be introduced, we shall postpone their

discussion to Secs. 3 and 4.

It must, of course, be pointed out that any such analysis

will bervalid only within the liited fra-nework of beam theory,

and must therefore be viewed merely as a first apYro::imation.

2. Method of solution, The method of design used here is

based upon a theorem of Prager, Drucker, and Greenberg (3), This

theorem states that if any set of stresses can be found which are

in equilibriixi with the given loads, and 'rhich nowhere violate

the yield condition, then the slab will not collapse under the

given loads, For the present problem, the unreinforced part of

the plate is assumed to be in a state of uniform plane stress, so



Bil-15 -3-

that the tractions applied to the edge of the slab will be trans-

mitted directly to the hub. Since the loads cannot cause yield-

ing in the slab, it remains only to consider the state of stress

in the hub.

The stress resultants to be considered are defined in Fi;.

1. Since shear is to be neglected, the stress resultants consist

of an axial force N and a moment M. "e choose two perpendicular

axes of symnetry as the coordinate a:res. The equation of the

cutout is then given in polar coordinates by

r = a(). (2.1)

The reinforcement is of radial thickness 6, so that the equation

of its outer contour is

r = a(9) + b (9). (2.2)

Vertical oouilibrium of the first quadrant demands that

No 0 Tyh(ao + 60 ). (2.3)

Howcver, the moment 1o at Q = 0 is indcterminate from static

considerations and is temporarily loft as a parameter.

Consider now equilibrium of the section 0ABCD (Figs. 1, 2).

As was previously stated, the statically admissible plane stress

field in the unreinforced slab is one of uniform stress, so that

the external, uniformly distributed loads are transmitted direct-

ly to the hub. For convenience of formulation we replace these

distributed loads on BC and CD by the equipollent concentrated

loads

Fx = T xh(a + 6 )sin 9,

F =T yia + b ) - (a + 6)cos 0],y Y o 0
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acting at the midpoints of BC and CD, respectively. Equilibrium

in the direction of N(@) then yields

N(@) = Fx sin 0 - F cos 0 + N cos 0

= h(a + b)[T x sin 2 9 + T y Cos 2  ], (2.5)

while moment equilibrium about the midpoint of DE yields

(Q) = - No((a o + ) - (a + +b)cos 9)

+ Fx [(a + }6)sin 9 - *(a + 6 )sin 9]

+ F yC(ao+ 0) + +(a + 6)cos 9 - (a + j6)cos 9]

+ 0 + ah(a + 6)[T x sin2 0 + Ty cos 2 0]

- y Ty a0 (a o + b 0) (2.6)

The interaction formula relating the bending moment and

axial force at any cross section is obtained immediately with

the aid of Fig. 3 (see also (1]):

4s HIM I + N2 = s2 H2 b2 (2.7)

If the hub is to become fully plastic everywhere, then Eq.

2.7 must hold for all values of g. Substituting Eqs. 2.5 and 2.6

into 2.7 we obtain an equation for the thickness 5(G) of the hub,

The computations for the case of general loading become quite

involved so that we shall consider in detail the two special

cases of uniaxial and equal biaxial tensions.

Inaxa nn. Let the direction of the applied

tractions be parallel to the x axis, and let the hub be designed

so that it restores the cutout slab to full stren-th. Then =0
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and Tx is equal to the yield strength s in simple tension, so that

Eqs. 2.5 and 2,6 become

IF(G) = sh(a + b)sin2 0,

M(G) = m,0 + ii sha(a + &)sin2  ,(3.)

Fron the assumed symmetry of the cutout about the y az:is,

the axial forces at 0 = 0 and 0 = 7E must each vanish, since their

sum is zero.

Ile now impose the condition that there must be at least one

section wrhere M = 0. That this is a reasonable requirement fol-

lows frorm the following argumdnt. Since M is a continous function

of @ if it is never zero it is always of the same sign, say posi-

tive. However, since the problem is determinate only to within

a constant bending moment, the stress resultants obtained by sub-

tracting the minimum value of M from the bending moment wirll be

statically admissible and nowhere fully olastic. Thus a different

reinforcement for full strength could be designed entirely con-

tained within the assumed shape, which is hardly a reasonable

basis for design.

In the case considered in [I], a and b are constant, so

that M(G) is an increasing function of 0 in the first quadrant,

and the zero value of M(G) occurs at 0 = a/2. We shall assume

that the shape of the cutout and the resulting reinforcement are

such that tiis statement is still valid, i.e., that

d2-[a(a + 6)sin@ ) 2 0
d-

for 0 < 0 < Rl/2. In the specific examples considered in Sece,

this is always the case.
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Returning to Eq. 3.1, we see that since the sections at

9 = 0 and Q = n/2 are fully plastic, the followin'r:; relations

must be valid:

N(O) = 0, 2 (3.2)

M(O) = M0  -S H 6o0

and

N(E/2) = sh(a I + b1) = s H bl,

M(i/2) = -s H 62/+ + s h al(aI + b1)/2 = 0

where the subscript 1 denotes the value of a quantity at 9 = n/2.

Eliminatin'; 51 between Eqs. 3.3, we may solve for the ratio of

hub thic':ness to slab thickness in terms of the hub width at

9 0: 2

E- 2al +0(34
h b20

The substitton of Eqs. 3,4 and 3.2 into 3.1 then yields

N(O) = Sh(a + 6)sin 2 0, (3.5)

M(G) = 1 sh[(2a1 + b2) - 2a(a + 6)sin 2 g].
0J

0ince by hypothesis M(G) is increasing in the first quadrant

and zero at 9 = n/2, it is everywhere non-positive, so that Ev.

2.9 becomes

(. o 1) + ( = ) 2 =(B)2 2 (3.6)

h sh h

We shall find it convenient to define the following dimensionless

quantities:

p(9) = 6(0) /6, a(9) = a(9)/o, a1 a(R/2). (3.7)
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Substituting !i'qs. 3.1, 3.5, and 3.7 into Eq. 3.6 and sim'lifjing,

we obtain

[(1 + 2a2)2  sin 4 Q]P2 + 2a sin 2 G[(l + 2a2) - sin2 glp

- [(1 + 2a2 )2 - 2a2 sin 2 O( + 2a2 ) + a2 sin 0.' = 0, (3.8)
1 2 1) i1

Since p must be positive, the larger root of Eq. 3.3 is correct.

Using tho abbreviation

f(G) = sin 2  /1( + 2 ), (3,9)

we may write the solution in the form

V%.2,2fl(1+ f)
p = 2m- -- (3.10)

1+ f -

With the definitions 3.7 and 3.9, Eq. 3.10 gives the width of the

hub at any cross section in terms of the arbitrary width 5o at the

section @ = 0 and the known boundary a(@) of the cutout. The cor-

responding thiclmess H of the hub is then given by Eq. 3.4.

4 iaxial tension. For full-strength biaxial tension.

Tx = Ty = s, so that Eqs. 2.5 and 2.6 become

N( ) = sh(a + ) (4 1)

M(G) = M + , sh(a(a + 6) - ao(a0 + )

Ile choose coordinate axes so that the x axis corresponds to

the lar,;est value of a. As in the case of uniaxial tensiont there

will be at least one section where M = 0, i.e., one section under

pure tension. Since the average tensile stress will be a maximum

across that direction where the cutout radius is a maximum we will
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choose this to bo the section of pure tension. Thus, setting

- = 0 in the second equation 4.1 we see that Mo = 0. The yield

condition 2.9 then states that at G = 0

N sh(ao + 5 0 ) = sHb

so that
H ao + + ().2)
h o  o"

The substitution of Zqs. 4.1 and 4.2, together with the

definitions 3.7, into the yield condition 2.7 leads to
2 2 2 ,2(1 + a0) 1a(a + p) - a (1 + ao) I + (a + p) 2  UI + a0) 2 ,(4-.3)

If the bending moment at a -iven section were positive,

En. 4.3 could be simplified to

a (2 + a )p 2 - 2a(2 + a0 )p - a2 (3 + 2ao) + 2a (1 + a )2 O.

However, the discriminant of this equation is

4a2(2 + ao) 2 - 4a (2 + a )[-a2 (3 + 2aO) + 2a (I + a )21
00 0 0 0 0

- 8(2 + ao)(1 + a) 2(a2 - a2).

Since, by our choice of axes, a < ao this means that the above

equation does not have real roots, so that the hypothesis that

M > 0 is not a valid one.

Taking I. < 0 in Eq. 4.3, solving for p and choosing that

root which yields a positive value of p, we obtain

.a + (l + a'/2a (a2 + 2a -a2)

a (2 + a)
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iJ._aS.p.. It is interesting to compare the reinforce-

ments here designed with those of Weiss, Prager, and Hodge El).

For a circular cutcut, of unit radius a = const. = 1/b E .2,q. 4.+

for biaxial tension then reduces to

P = _t = 1, ( .1)

i.e., the hub is of constant iridth bo. Equation 4.2 then shows

that this cntout is precisely that obtained in [I], as would, of

course, be predicted by the radial symmetry of both cutout and

tractions.

For uniaxial tension, however, the substitution a = const.

into -q. 3.10 does not yield any particular simplification. For

any given value of 6o, curves may readily be constructed. Fiz. 4

shows the case

6 = 1, H = 3.00 h, (5.2)

Fig. 5 the case

60 = 2, H = 1.50 h.

and Fig. 6 the case

bo = 3, H = 1.22 h. (5.4)

In each figure, the dotted line indicates the circular rein-

forcement computed from the appronriate one of Eqs. 13 and 19

of [1]. Some interpretation of these figures is given in Sec. 6.

4, The author wishes to thank Mr. 1. Levin for carrying out
the computations necessary to construct the figures in
this section.
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As a second example, consider a square cutout of side 2.

If the slab is loaded in uniaxial tension perpendicular to a

side of the cutout, the equations of the cutout in the first

quadrant are

a(G) = l/cos 9, 0 Q A/, (J
a(g) = l/sin 0, n/4 _ o < n/2 (5)

a o - al=I. J
On the other hand, if the uniaxial tension is perpendicular to a

diagonal, the x axis must be taken along a diagonal, so that the

equation of the first quadrant is

a(@) = VT//(sing + cos 9), (5.6)
ao aJ= V2.

For biaxial tension, the axes must also be chosen along the diag-

onals, so that a(@) is still given by Eq. 5.6. In Fig. 7 we have

sketched the reinforcements for the three types of loading cor-

responding to a thickness ratio of H/h = 1.5.

6A.. imitatioLas nd conclusions. As a preface to any con-

clusions, the limitations of the results must be pointed out.

A detailed discussion of the general validity of beam theory as

applied to reinforcement problems is contained in [I) and iril

not be repeated here. However, it should be pointed out that

on the one hand, the depth of the beam must not be too small

compared to its length, so that the results pictured in Figs. 5,

6, 7 (b, c) may be only rather crude approximations. On the

other hand, the thickness of the hub H must not be too large
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compared to the slab height h or the question of carrying capa-

city will arise. This in turn throws some doubt upon Fig.

since there H/h = 3. It follows, therefore, that all results

obtained by beam theory must be regarded merely as first approxi-

mat ions.
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Fig. 1. Stress resultants.
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Fig* + Full reinforcement for circular cutout, b0 1
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Fig. 5. Full reinforcement for circular cutout, 6~, = 2.
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Fig, 6 Full reinforcement for circular cutout, bo =3
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Fig* 7 Full reinforcements for square cutout.
(a) Uniaxial loading perpendicular to side,
(b) Uniaxial loading along diagonal,
(c) Biaxial loading.


